Y11 Science Revision 2023 Guidance and Revision Timetable

You should aim to do Science revision 3 times a week, e.g. a 1 hour session for each of Biology, Chemistry and Physics (3 hr a week is plenty).

The suggested revision timetables on the tabs/pages below are based on using the CGP revision resources. If you do not already have these, then they can be purchased via the links below that direct you to the CGP bundle packs containing: a revision guide, exam practice workbook and a pack of revision cards.

On the last 2 tabs/pages there is a **How Science Works Crossword and Answer sheet**. This covers the definitions for words like, **accuracy, resolution, repeatability etc**. If you don't like crosswords you could use the answer sheet to make revision cards to help you learn these terms.

Links to purchasing CGP resources

Combined Science - Foundation

Combined Science - Higher

Separate Biology

Separate Chemistry

Separate Physics

Other online resources

senecalearning.com

physicsandmathstutor.com

bbcbitesize.co.uk

Read the section from **CGP** revision guide. Complete practice **Qs** from the **CGP** workbook and follow the embedded links to watch a clip about the required practical. There are also links to the AQA website so you can download past papers and mark schemes to use. Be careful to filter for Paper 1/2 and for either Foundation/Higher tier. **Exam dates are marked in bold font.**

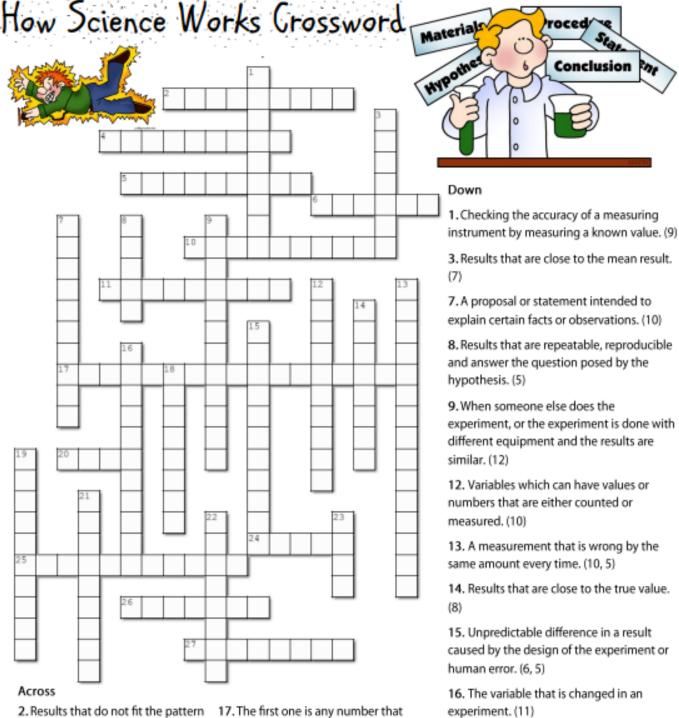
w/c	Combined Sci	ience Biology	Combined Sci	ence Chemistry	Combined Science Physics					
2023										
6th	Cell Biology + I	<u>RP</u>	Atomic Structu	tomic Structure and Periodic Energy + RP (Measuring						
Feb	(Microscopy)		Table		heat capacity)					
13th	Cell Biology + I	RP (Osmosis)		ire and Periodic	Energy					
Feb			Table							
20th	Organisation +	- RP (Enzymes)	Bonding Struct		Electricity + RP (Resistance)					
Feb			Properties of N							
27th	Organisation +	- RP (Food	Bonding Struct		Electricity + RP (Current-Potential					
Feb	<u>Tests)</u>		Properties of N		<u>characteristics)</u>					
6th	Infection and F	Response	Quantitative C	hemistry	Particle Model of Matter + RP					
March					(Density)					
13th	Infection and F	Response	Quantitative C	hemistry	Particle Model of Matter					
March										
20th	Bioenergetics			ges RP (Making	Atomic Structure	(Radioactivity)				
March	(Photosynthes	<u>is)</u>	salt crystals fro							
			metal carbona	te or metal						
07.1	D: D 4.1	. /5 .	oxide)	. 55						
27th	Bio Paper 1 to	pics/Past	Chemical Chan	ges + RP	Atomic Structure (Radioactivity)					
March	paper		(Electrolysis)		Dhys Danor 1 tonics/Dast name					
3rd	Homeostasis and Response		Energy Change		Phys Paper 1 topics/Past paper					
April	+ RP (Reaction	<u>rimes)</u>	(Measuring ter	<u>nperature</u>						
10th	Homogetosis and Decrees		changes)	tanias/Dast	Forces					
10th	Homeostasis and Response		Chem Paper 1	topics/Past	Torces					
April 17th	Die Denen 4 to de la la		<u>paper</u>	at of Chamical	Forces + RP (Elasticity)					
April	Bio Paper 1 topics/Past		Rate and Exter Change + RP (N		- C. CCS - Til (EldStroley)					
April	<u>paper</u>		rate of reaction							
24th	Inheritance Va	ariation and	Chem Paper 1		Forces + RP (Acce	leration)				
April	Evolution	heritance, Variation and volution		<u> </u>	- COSS THE PROSPERATION TO					
1st	Inheritance, Variation and		<u>paper</u> Rate and Exter	nt of Chemical	Phys Paper 1 topics/Past paper					
May	Evolution		Change		, , , , , , , , , , , , , , , , , , , ,					
8th	Homeostasis a	ind Response	Organic Chemi	stry	Waves + RP (Wav	es)				
May	+ RP (Plant Res		3	,						
15th	Ecology	Bio Paper 1	Chemical Analy	ysis + RP	Waves + RP (Radi	ation and				
May	· ·	(16th May)	(Chromatograp	ohy)	Absorption)					
22nd	Ecology		Chemistry	Chem Paper 1	Magnetism and	Phys				
May			of the	(22nd May)	Electromagnetism	n Paper 1				
			Atmosphere			(25th May)				
29th	Bio Paper 2 topics/Past		The Earth's Re	sources + RP	Magnetism and					
May	paper		(Water Purifica		Electromagnetism					
5th	Bio Paper 2	Bio Paper 2	Chem Paper 2 topics/Past		Phys Paper 2 topics/Past paper					
June	topics/Past	(9th June)	paper							
	paper									
12th			<u>Chem Paper</u>	Chem Paper 2	Phys Paper 2	Phys Paper 2				
June			2 topics/Past	(13th June)	Sth June) topics/Past (16t					
			paper		paper					
	<u>l</u>									

0	4 Ք	helium 2	20	neon 10	40	argon	84	χ	krypton 36	131	Xe	xenon 54	[222]	radon Pe	200	[284] Uuo	ununoctium	118
7			19	fluorine 9	35.5	chlorine	80	Ŗ	bromine 35	127	_	iodine 53	[210]	At astatine	3 2	[294] Uus	ununseptium	117
9			91	oxygen 8	32	sulfur 16	79	Se	selenium 34	128	<u>e</u>	tellurium 52	[209]	polonium 2	1 2 2	1	livermorium	116
2			7 2	nitrogen 7	33	phosphorus	75	As	arsenic 33	122	Sp	antimony 51	209	bismuth	3 2	[788] Onb	ununpentium	115
4			77	carbon 6	28	silicon	73	Ge	germanium 32	119	Sn	tin 50	207	ead co	20 02	[587] H	flerovium	114
က			Έ0	boron 5	27	aluminium	70	Ga	gallium 31	115	드	indium 49	204	thallium	- 5		ununtrium	113
							65	Zu	zinc 30	112	ၓ	cadmium 48	201	mercury	3 2	် လူ့ ဦ	copernicium	112
														gold 70	-			
							59	ź	nickel 28	106	Pd	palladium 46	195	platinum	0 2	[7/2] Ds	darmstadtium	110
							59	ပိ	cobalt 27	103	몬	rhodium 45	192	iridium 77	1000	₩ Mt	meitnerium	109
	- I	hydrogen 1					56	Fe	iron 26	101	Ru	ruthenium 44	190	osmium 76	2 2	[//Z] Hs	hassium	108
					7		55	M	manganese 25	[88]	ပ	m technetium ru	186	rhenium	2 2	204] Bh	pohrium	107
			c mass	atomic (proton) number			52	ပ်	chromium n	96	õ	m molybdenum t	184	tungsten	† 200	S d	seaborgium	106
		Key	relative atomic mass	atomic symbo name nic (proton) nun			51	>	vanadium 23	93	g	niobium 41	181	la tantalum 7.3	2 2	Dp	dubnium	105
			relativ	atomic			48	F	titanium 22	91	Zr	zirconium 40	178	hafnium 7.0	27	R	rutherfordium	104
							45	လွ	scandium 21	88	>	yttrium 39	139	Laî lanthanum E7		[77] Ac *		
7			o d	beryllium	24	magnesium	40	Ca	calcium 20	88	Š	strontium 38	137	Ba barium	200	Ra	radium	88
-			_ :	lithium 3		sodium 11	39	¥	potassium 19	85	S _o	rubidium 37	133	caesium	5 5	<u>7</u>	francium	87
					_		_								_			

* The Lanthanides (atomic numbers 58 – 71) and the Actinides (atomic numbers 90 – 103) have been omitted.

Relative atomic masses for **Cu** and **Cl** have not been rounded to the nearest whole number.

GCSE Combined Science: Trilogy (8464) and GCSE Combined Science: Synergy (8465)


FOR USE IN JUNE 2023 ONLY

HT = Higher Tier only equations

kinetic energy = 0.5 × mass × (speed) ²	$E_k = \frac{1}{2} m v^2$ $E_e = \frac{1}{2} k e^2$
elastic potential energy = 0.5 × spring constant × (extension) ²	$E_e = \frac{1}{2} k e^2$
gravitational potential energy = mass × gravitational field strength × height	$E_p = m g h$
change in thermal energy = mass × specific heat capacity × temperature change	$\Delta E = m \ c \ \Delta \theta$
$power = \frac{energy transferred}{time}$	$P = \frac{E}{t}$
$power = \frac{work done}{time}$	$P = \frac{W}{t}$
$efficiency = \frac{useful output energy transfer}{total input energy transfer}$	
$efficiency = \frac{useful power output}{total power input}$	
charge flow = current × time	Q = It
potential difference = current × resistance	V = IR
power = potential difference × current	P = VI
power = (current) ² × resistance	$P = I^2 R$
energy transferred = power × time	E = P t

See next page for more equations

	energy transferred = charge flow × potential difference	E = Q V
нт	potential difference across primary coil × current in primary coil = potential difference across secondary coil × current in secondary coil	$V_p I_p = V_s I_s$
	$density = \frac{mass}{volume}$	$ \rho = \frac{m}{V} $
	thermal energy for a change of state = mass × specific latent heat	E = m L
	weight = mass × gravitational field strength	W=m g
	work done = force × distance (along the line of action of the force)	W = F s
	force = spring constant × extension	F = k e
	distance travelled = speed × time	s = v t
	$acceleration = \frac{change in velocity}{time taken}$	$a = \frac{\Delta v}{t}$
	$(final\ velocity)^2 - (initial\ velocity)^2 = 2 \times acceleration \times distance$	$v^2 - u^2 = 2 a s$
	resultant force = mass × acceleration	F = m a
нт	momentum = mass × velocity	p = m v
	$period = \frac{1}{frequency}$	$T = \frac{1}{f}$
	wave speed = frequency × wavelength	$v=f\lambda$
нт	force on a conductor (at right angles to a magnetic field) carrying a current = magnetic flux density × current × length	F = B I I

- Results that do not fit the pattern of the other results. (9)
- Variables which have values that are labels. (9)
- An error caused by equipment that is not returned to zero each time. (4, 5)
- The middle value when all the data is put in order. (6)
- When the same person does an experiment again, using the same equipment and achieving similar results. (10)
- Type of graph used for two continuous variables e.g. force and extension. (4, 5)

- 17. The first one is any number that isn't zero. The following ones can be zeros. (11, 6)
- The number that appears most frequently. (4)
- 24. The difference between the largest value and the smallest value. (5)
- 25. The range divided by 2. (11)
- 26. An experiment that is kept under the same conditions as the rest of the investigation, without having anything done to it. (7)
- Type of graph used for a categoric and continuous variable.
 (3, 5)

- 18. An experiment where the control variables are kept the same or monitored.
- (4, 4) 19. The smallest change in a measuring

instrument. (10)

- The variable that is measured when you change the independent variable. (9)
- 22. This would be 10 cm for a set of 11 readings over a distance of 1 m. (8)
- All the results, except for the anomalous results, added together and divided by the number of results. (4)

How Science Works Crossword Answers

Across

- 2. Results that do not fit the pattern of the other results. (9) Anomalous
- Variables which have values that are labels. (9) Categoric
- An error caused by equipment that is not returned to zero each time. (4, 5) Zero error
- 6. The middle value when all the data is put in order. (6) Median
- 10. When the same person does an experiment again, using the same equipment and achieving similar results.
 (10) Repeatable
- 11. Type of graph used for two continuous variables e.g. force and extension. (4, 5) Line graph
- 17. The first one is any number that isn't zero. The following ones can be zeros. (11, 6) Significant figure
- 20. The number that appears most frequently. (4) Mode
- 24. The difference between the largest value and the smallest value. (5) Range
- 25. The range divided by 2. (11) Uncertainty
- 26. An experiment that is kept under the same conditions as the rest of the investigation, without having anything done to it. (7) Control
- 27. Type of graph used for a categoric and continuous variable. (3, 5) Bar chart

Down

- 1. Checking the accuracy of a measuring instrument by measuring a known value. (9) Calibrate
- Results that are close to the mean result. (7) Precise
- A proposal or statement intended to explain certain facts or observations. (10) Hypothesis
- Results that are repeatable, reproducible and answer the question posed by the hypothesis. (5) Valid
- When someone else does the experiment, or the experiment is done with different equipment and the results are similar. (12) Reprodudble
- 12. Variables which can have values or numbers that are either counted or measured. (10) Continuous
- A measurement that is wrong by the same amount every time. (10, 5) Systematic error
- 14. Results that are close to the true value. (8) Accurate
- Unpredictable difference in a result caused by the design of the experiment or human error. (6, 5) Random error
- 16. The variable that is changed in an experiment. (11) Independent
- An experiment where the control variables are kept the same or monitored. (4, 4) Fair test
- 19. The smallest change in a measuring instrument. (10) Resolution
- 21. The variable that is measured when you change the independent variable. (9) Dependent
- 22. This would be 10 cm for a set of 11 readings over a distance of 1 m. (8) Interval
- 23. All the results, except for the anomalous results, added together and divided by the number of results. (4)
 Mean