Y11 Science Revision 2023 Guidance and Revision Timetable

You should aim to do Science revision 3 times a week, e.g. a 1 hour session for each of Biology, Chemistry and Physics (3 hr a week is plenty).

The suggested revision timetables on the tabs/pages below are based on using the CGP revision resources. If you do not already have these, then they can be purchased via the links below that direct you to the CGP bundle packs containing: a revision guide, exam practice workbook and a pack of revision cards.

On the last 2 tabs/pages there is a **How Science Works Crossword and Answer sheet**. This covers the definitions for words like, **accuracy, resolution, repeatability etc**. If you don't like crosswords you could use the answer sheet to make revision cards to help you learn these terms.

Links to purchasing CGP resources

<u>Combined Science - Foundation</u>

Combined Science - Higher

Separate Biology

Separate Chemistry

Separate Physics

Other online resources

senecalearning.com

physicsandmathstutor.com

bbcbitesize.co.uk

Read the section from **CGP** revision guide & complete practice **Qs** from the **CGP** workbook. Follow the embedded links to watch clips about the required practicals and download past papers and mark schemes. Be careful to filter for Paper 1/2 and Foundation/Higher tier. **Exam dates marked in bold font.**

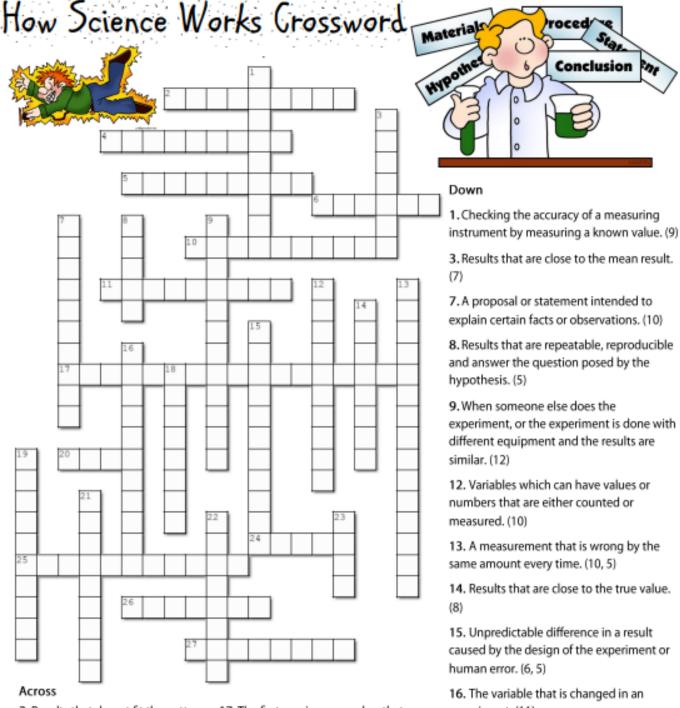
	-			- Charata		•	
w/c	-	e Biology	Separate Chemistry Separate Physics				
6th	Cell Biology + F	RP (Microscopy)		ure and Periodic	Energy + RP (Measuring specific		
Feb			Table		heat capacity)		
13th	Cell Biology + F	Cell Biology + RP (Osmosis)		ure and Periodic	Energy + RP (Thermal Insulation)		
Feb			Table				
20th	Organisation + RP (Enzymes)		Bonding Struc	ture and	Electricity + RP (Resistance)		
Feb	Organisacion i in (Enzymes)		Properties of		<u>Electricity</u> : W (Nesistance)		
	Organisation	DD /Food Tosts)	Bonding Struc		Flootsister DD /Compant Dotontial		
27th	Organisation +	Organisation + RP (Food Tests)			Electricity + RP (Current-Potential		
Feb			Properties of		<u>characteristics)</u>		
6th	Infection and F	Response + RP		Chemistry + RP	Particle Model of Matter + RP		
Marc	(Microbiology)		(Neutralisatio	<u>n)</u>	(Density)		
h							
13th	Infection and F	Response	Quantitative (Chemistry	Atomic Structure (Radioactivity)		
Marc							
h							
20th	Bioenergetics -	+ RP	Chemical Cha	nges RP (Making	Atomic Structure (Radioactivity)		
Marc				om acid plus metal		a.ououviey)	
_	THOTOSYITTIES	(Photosynthesis)					
h	Hammer of the	and Decree	carbonate or	·	Dhua Danar 4 ta sina /D		
27th		nd Response +	Chemical Cha	nges + RP	Phys Paper 1 topics/Past paper		
Marc	RP (Reaction Times)		(Electrolysis)				
h							
3rd	Homeostasis and Response		Energy Chang	es + RP	Forces		
April			(Measuring te	<u>mperature</u>			
			changes)				
10th	Homeostasis and Response +		Chem Paper 1	topics/Past paper	Forces + RP (Elasticity)		
April	RP (Plant Responses)						
17th	Inheritance, Variation and		Rate and Exte	nt of Chemical	Forces + RP (Acceleration)		
April	Evolution			Measuring the			
Aprii	LVOIGLIOIT						
241	lub suitan as Mariatian and		rate of reaction		144		
24th	Inheritance, Variation and			nt of Chemical	Waves + RP (Waves)		
April	Evolution		Change/Orgai	•			
1st	Bio Paper 1 topics/Past paper		Organic Chem	nistry	Waves + RP (Radiation and		
May					Absorption)		
8th	Bio Paper 1 topics/Past paper		Chemical Ana	lysis + RP	<u>Light + RP (Reflection and</u>		
May			(Chromatogra	iphy)	Refraction)		
			Chemical Ana	lysis + Separate			
			Chem RP (Ide				
15th	Ecology + RP	Bio Paper 1		topics/Past paper	Phys Paper 1 topics/F	Past naner	
May	(Sampling)	(16th May)	S.I.C.III I aper 1	. topico, i ast paper	. Hyo i aper I topics/i	от рарег	
22nd	Ecology + RP (Chemistry	Chem Paper 1	Magnetism and	Phys Paper	
	LCOIDEY THE (L	occay)	of the	•		1 (25th	
May				(22nd May)	Electromagnetism	•	
			Atmosphere			May)	
29th	Bio Paper 2 topics/Past paper		The Earth's Re	esources + RP	Space		
May			(Water Purific	ation)			
5th	Bio Paper 2 Bio Paper 2		Using our Res	ources/Chem	Phys Paper 2 topics/Past paper		
June	topics/Past	(9th June)	Paper 2 topics/Past paper				
	paper						
12th			Chem Paper	Chem Paper 2	Phys Paper 2	Phys Paper	
June			2	(13th June)	topics/Past paper	2 (16th	
Julie			<u>topics/Past</u>	(15th Julie)	topics/1 ast paper	June)	
						Juliej	
			<u>paper</u>				

0	He He	20 Ne	10	40 Ar	argon	84	ž	krypton 36	131	xenon 54	[222] Rn	radon 86	[294] Uuo	ununoctium	118
7		19 -	fluorine 9	35.5 CI	chlorine 17	80	ğ	bromine 35	127	iodine 53	[210] At	astatine 85	[294] Uus	ununseptium	117
9		_								tellurium 52					
2					10					antimony 51				_	
4		22	carbon 6	28 Si	silicon 14	73	g	germanium 32	119	[‡] 20	207 Pb	lead 82	[289] FI	flerovium	114
က		Έ α	boron 5	27 AI	aluminium 13	20	Ga	gallium 31	115	indium 49	204 T	thallium 81	[286] Uut	ununtrium	113
						65	Zu	zinc 30	112	cadmium 48	201 Ha	mercury 80	[285] Cn	copernicium	112
						63.5	္	copper 29	108	silver 47	197 Au	plog 79	[272] Ra	roentgenium	11
						59	Z	nickel 28	106	palladium 46	195 Pt	platinum 78	[271] Ds	darmstadtium	110
						59	ပိ	cobalt 27	103 P.	rhodium 45	192 r	iridium 77	[268] Mt	meitnerium	109
	+ Hydrogen					56	Ь	iron 26	101	ruthenium	190 Os	osmium 76	[277] Hs	hassium	108
		,		1		55		chromium manganese 24 25	[98]	technetium 43	186 Re	_	[264]		
		c mass	atomic (proton) number			52			96	Ė	184	tungsten 74	[266]	seaborgium	106
	Key	relative atomic mass atomic symbol	(proton)			51	>	vanadium 23	93		181 Ta	tantalum 73	[262] Db	dubnium	105
		relativ atc	atomic			48	F	titanium 22	91	zirconium 40	178 Hf	hafnium 72	[261] Rf	rutherfordium	104
						45	လွ	scandium 21	>	yttrium 39	139 La *	lanthanum 57	[227] Ac *	-	
7		ი Be	beryllium 4	24 Mg	magnesium 12	40	င္မ	calcium 20	88	strontium 38	137 Ba	barium 56	[226] Ra	radium	88
-		/ Li	lithium 3	23 Na	sodium 11	39	¥	potassium 19	85	rubidium 37	133 Cs	caesium 55	[223] Fr	francium	87

* The Lanthanides (atomic numbers 58 – 71) and the Actinides (atomic numbers 90 – 103) have been omitted.

Relative atomic masses for **Cu** and **Cl** have not been rounded to the nearest whole number.

GCSE Combined Science: Trilogy (8464) and GCSE Combined Science: Synergy (8465)


FOR USE IN JUNE 2023 ONLY

HT = Higher Tier only equations

kinetic energy = 0.5 × mass × (speed) ²	$E_k = \frac{1}{2} m v^2$ $E_e = \frac{1}{2} k e^2$
elastic potential energy = 0.5 × spring constant × (extension) ²	$E_e = \frac{1}{2} k e^2$
gravitational potential energy = mass × gravitational field strength × height	$E_p = m g h$
change in thermal energy = mass × specific heat capacity × temperature change	$\Delta E = m \ c \ \Delta \theta$
$power = \frac{energy transferred}{time}$	$P = \frac{E}{t}$
$power = \frac{work done}{time}$	$P = \frac{W}{t}$
efficiency = $\frac{\text{useful output energy transfer}}{\text{total input energy transfer}}$	
$efficiency = \frac{useful power output}{total power input}$	
charge flow = current × time	Q = It
potential difference = current × resistance	V = IR
power = potential difference × current	P = VI
power = (current) ² × resistance	$P = I^2 R$
energy transferred = power × time	E = P t

See next page for more equations

	energy transferred = charge flow × potential difference	E = Q V
нт	potential difference across primary coil × current in primary coil = potential difference across secondary coil × current in secondary coil	$V_p I_p = V_s I_s$
	$density = \frac{mass}{volume}$	$ \rho = \frac{m}{V} $
	thermal energy for a change of state = mass × specific latent heat	E = m L
	weight = mass × gravitational field strength	W=m g
	work done = force × distance (along the line of action of the force)	W = F s
	force = spring constant × extension	F = k e
	distance travelled = speed × time	s = v t
	$acceleration = \frac{change in velocity}{time taken}$	$a = \frac{\Delta v}{t}$
	$(final\ velocity)^2 - (initial\ velocity)^2 = 2 \times acceleration \times distance$	$v^2 - u^2 = 2 a s$
	resultant force = mass × acceleration	F = m a
нт	momentum = mass × velocity	p = m v
	$period = \frac{1}{frequency}$	$T = \frac{1}{f}$
	wave speed = frequency × wavelength	$v=f\lambda$
нт	force on a conductor (at right angles to a magnetic field) carrying a current = magnetic flux density × current × length	F = B I I

- 2. Results that do not fit the pattern of the other results. (9)
- 4. Variables which have values that are labels. (9)
- 5. An error caused by equipment that is not returned to zero each time. (4, 5)
- 6. The middle value when all the data is put in order. (6)
- 10. When the same person does an experiment again, using the same equipment and achieving similar results. (10)
- 11. Type of graph used for two continuous variables e.g. force and extension. (4, 5)

- 17. The first one is any number that isn't zero. The following ones can be zeros. (11, 6)
- 20. The number that appears most frequently. (4)
- 24. The difference between the largest value and the smallest value.
- 25. The range divided by 2. (11)
- 26. An experiment that is kept under the same conditions as the rest of the investigation, without having anything done to it. (7)
- 27. Type of graph used for a categoric and continuous variable. (3, 5)

- 3. Results that are close to the mean result.
- explain certain facts or observations. (10)
- and answer the question posed by the
- experiment, or the experiment is done with different equipment and the results are
- 13. A measurement that is wrong by the
- caused by the design of the experiment or
- experiment. (11)
- 18. An experiment where the control variables are kept the same or monitored. (4, 4)
- 19. The smallest change in a measuring instrument. (10)
- The variable that is measured when you change the independent variable. (9)
- 22. This would be 10 cm for a set of 11 readings over a distance of 1 m. (8)
- 23. All the results, except for the anomalous results, added together and divided by the number of results. (4)

How Science Works Crossword Answers

Across

- 2. Results that do not fit the pattern of the other results. (9) Anomalous
- 4. Variables which have values that are labels. (9) Categoric
- 5. An error caused by equipment that is not returned to zero each time. (4, 5) Zeroerror
- 6. The middle value when all the data is put in order. (6) Median
- 10. When the same person does an experiment again, using the same equipment and achieving similar results.
 (10) Repeatable
- 11. Type of graph used for two continuous variables e.g. force and extension. (4, 5) Line graph
- 17. The first one is any number that isn't zero. The following ones can be zeros. (11, 6) Significant figure
- 20. The number that appears most frequently. (4) Mode
- 24. The difference between the largest value and the smallest value. (5) Range
- 25. The range divided by 2. (11) Uncertainty
- 26. An experiment that is kept under the same conditions as the rest of the investigation, without having anything done to it. (7) Control
- 27. Type of graph used for a categoric and continuous variable. (3, 5) Bar chart

Down

- Checking the accuracy of a measuring instrument by measuring a known value. (9) Calibrate
- Results that are close to the mean result. (7) Precise
- A proposal or statement intended to explain certain facts or observations. (10) Hypothesis
- 8. Results that are repeatable, reproducible and answer the question posed by the hypothesis. (5) Valid
- When someone else does the experiment, or the experiment is done with different equipment and the results are similar. (12) Reproducible
- 12. Variables which can have values or numbers that are either counted or measured. (10) Continuous
- 13. A measurement that is wrong by the same amount every time. (10, 5) Systematic error
- 14. Results that are close to the true value. (8) Accurate
- Unpredictable difference in a result caused by the design of the experiment or human error. (6, 5) Random error
- 16. The variable that is changed in an experiment. (11) Independent
- 18. An experiment where the control variables are kept the same or monitored. (4, 4) Fair test
- 19. The smallest change in a measuring instrument. (10) Resolution
- 21. The variable that is measured when you change the independent variable. (9) Dependent
- 22. This would be 10 cm for a set of 11 readings over a distance of 1 m. (8) Interval
- 23. All the results, except for the anomalous results, added together and divided by the number of results. (4)
 Mean